论文标题
使用有序神经元LSTM的自动业务过程结构发现:初步研究
Automatic Business Process Structure Discovery using Ordered Neurons LSTM: A Preliminary Study
论文作者
论文摘要
从文本流程文档中发现的自动过程发现非常需要减少组织中业务流程管理(BPM)实施的时间和成本。但是,现有的自动过程发现方法主要集中于识别文档中的活动。在整个过程发现范围中重要的活动之间的结构关系仍然是一个挑战。实际上,业务流程具有潜在的语义分层结构,该结构定义了不同级别的细节以反映复杂的业务逻辑。神经机器学习领域的最新发现表明,有意义的语言结构可以通过联合语言建模和结构学习引起。受这些发现的启发,我们建议通过建立一个利用新颖的经常性架构的神经网络来检索文本业务过程文档中存在的潜在层次结构,并以过程级的语言模型目标订购了神经元LSTM(ON-LSTM)。我们从我们实用的机器人过程自动化(RPA)项目中测试了过程描述文档(PDD)的拟议方法。初步实验显示出令人鼓舞的结果。
Automatic process discovery from textual process documentations is highly desirable to reduce time and cost of Business Process Management (BPM) implementation in organizations. However, existing automatic process discovery approaches mainly focus on identifying activities out of the documentations. Deriving the structural relationships between activities, which is important in the whole process discovery scope, is still a challenge. In fact, a business process has latent semantic hierarchical structure which defines different levels of detail to reflect the complex business logic. Recent findings in neural machine learning area show that the meaningful linguistic structure can be induced by joint language modeling and structure learning. Inspired by these findings, we propose to retrieve the latent hierarchical structure present in the textual business process documents by building a neural network that leverages a novel recurrent architecture, Ordered Neurons LSTM (ON-LSTM), with process-level language model objective. We tested the proposed approach on data set of Process Description Documents (PDD) from our practical Robotic Process Automation (RPA) projects. Preliminary experiments showed promising results.