论文标题

稀疏阵列设计通过分形几何形状

Sparse Array Design via Fractal Geometries

论文作者

Cohen, Regev, Eldar, Yonina C.

论文摘要

稀疏的传感器阵列在雷达,阵列处理,超声成像和通信等各个领域都引起了很大的关注。在基于相关的处理的背景下,此类数组可以比物理传感器能够解决更多的不相关源。稀疏阵列的这种属性源于其差异的大小,定义为元素位置的差异。因此,差异很大的稀疏阵列的设计引起了极大的兴趣。此外,在不同应用中,其他阵列属性(例如对称性,鲁棒性和阵列经济)很重要。许多研究提出了各种稀疏的几何形状,重点是某些特性,同时缺乏其他特性。将多个属性纳入设计任务会导致通常是NP- hard的组合问题。对于小阵列,这些优化问题可以通过蛮力解决,但是,它们很棘手。在本文中,我们提出了一种可扩展的系统方法,用于设计大型稀疏阵列考虑多个属性。为此,我们介绍了一个分形数组设计,其中生成器阵列根据其差异共同扩展。我们的主要结果指出,对于发电机的适当选择,此类分形阵列表现出很大的差异共阵列。此外,我们表明分形数组从发电机继承了它们的属性。因此,可以根据所需的要求优化一个小发电机,然后扩展以创建符合相同标准的分形数组。这种方法为具有特定属性的数百或数千个元素的有效设计铺平了道路。

Sparse sensor arrays have attracted considerable attention in various fields such as radar, array processing, ultrasound imaging and communications. In the context of correlation-based processing, such arrays enable to resolve more uncorrelated sources than physical sensors. This property of sparse arrays stems from the size of their difference coarrays, defined as the differences of element locations. Thus, the design of sparse arrays with large difference coarrays is of great interest. In addition, other array properties such as symmetry, robustness and array economy are important in different applications. Numerous studies have proposed diverse sparse geometries, focusing on certain properties while lacking others. Incorporating multiple properties into the design task leads to combinatorial problems which are generally NP-hard. For small arrays these optimization problems can be solved by brute force, however, in large scale they become intractable. In this paper, we propose a scalable systematic way to design large sparse arrays considering multiple properties. To that end, we introduce a fractal array design in which a generator array is recursively expanded according to its difference coarray. Our main result states that for an appropriate choice of the generator such fractal arrays exhibit large difference coarrays. Furthermore, we show that the fractal arrays inherit their properties from their generators. Thus, a small generator can be optimized according to desired requirements and then expanded to create a fractal array which meets the same criteria. This approach paves the way to efficient design of large arrays of hundreds or thousands of elements with specific properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源