论文标题
聚合物融化的纠缠长度,管直径和平稳模量的统一分析表达式
Unified analytic expressions for the entanglement length, tube diameter, and plateau modulus of polymer melts
论文作者
论文摘要
通过将分子动力学模拟和拓扑分析与缩放论证相结合,我们获得了分析表达式,这些表达式可以定量预测纠缠长度$ n_e $,高原模量$ g $以及管道直径$ a $ a $ a $ a $ a $ a $ a $跨度跨越了整个链固体的整个链刚度,该系统仍然是同位素。我们的表达解决了在先前的比例标准预测之间的冲突[lin-noolandi:$ g \ ell_k^3/k_ \ textrm {b} t \ sim(\ ell_k/p)^3 $],edwards/de genNE (\ ell_k/p)^2 $],并紧密地键[莫尔斯:$ g \ ell_k^3/k_ \ textrm {b} t \ sim(\ ell_k/p)^{1+ε} $]制度,在$ \ ell_k $和$ p $的情况下,是$ \ ell_k $和$ p $。我们还发现,最大纠缠(最小$ n_e $)与当地列命令的发作相吻合。
By combining molecular dynamics simulations and topological analyses with scaling arguments, we obtain analytic expressions that quantitatively predict the entanglement length $N_e$, the plateau modulus $G$, and the tube diameter $a$ in melts that span the entire range of chain stiffnesses for which systems remain isotropic. Our expressions resolve conflicts between previous scaling predictions for the loosely entangled [Lin-Noolandi: $G\ell_K^3/k_\textrm{B}T \sim (\ell_K/p)^3$], semiflexible [Edwards/de Gennes: $G\ell_K^3/k_\textrm{B}T \sim (\ell_K/p)^2$], and tightly-entangled [Morse: $G\ell_K^3/k_\textrm{B}T \sim (\ell_K/p)^{1+ε}$] regimes, where $\ell_K$ and $p$ are respectively the Kuhn and packing lengths. We also find that maximal entanglement (minimal $N_e$) coincides with the onset of local nematic order.