论文标题
$ \ Mathcal {su} _ {x}(2,ξ)$和blow-ups的verlinde跟踪
The Verlinde traces for $\mathcal{SU}_{X}(2,ξ)$ and blow-ups
论文作者
论文摘要
鉴于Automorthism Group $ G $的紧凑型Riemann Surface $ x $至少$ 2 $,我们提供了公式,使我们能够在$ g $ linearized Line bundles的全球段空间中计算X的自动形态痕迹,这些线路是在沿曲线$ x $ x $ x $ x $ x $ x $ x $ x $ x $ x上定义的。该方法是Thaddeus使用的一种方法来计算这些空间的尺寸。特别是我们可以计算与Moduli Space $ su_ {x}(2,ξ)$相对应的Verlinde空间上$ x $的自动形态痕迹。
Given a compact Riemann surface $X$ of genus at least $2$ with automorphism group $G$ we provide formulae that enable us to compute traces of automorphisms of X on the space of global sections of $G$-linearized line bundles defined on certain blow-ups of proyective spaces along the curve $X$. The method is an adaptation of one used by Thaddeus to compute the dimensions of those spaces. In particular we can compute the traces of automorphisms of $X$ on the Verlinde spaces corresponding to the moduli space $SU_{X}(2,ξ)$ when $ξ$ is a line bundle $G$-linearized of suitable degree.