论文标题
半监督分类使用基于注意的粗分辨率数据的正规化
Semi-supervised Classification using Attention-based Regularization on Coarse-resolution Data
论文作者
论文摘要
在多种分辨率下观察到许多现实现象。旨在预测这些现象的预测模型通常分别考虑不同的分辨率。这种方法可能会限制在良好决议中需要预测但可用培训数据的应用程序中。在本文中,我们提出了分类算法,以利用较粗略决议的监督来帮助培训模型,以实现更优质的决议。在多视图框架中,不同的分辨率被建模为数据的不同视图,该框架利用了不同视图的功能的互补性,以改善两种视图的模型。与传统的多视图学习问题不同,在我们的情况下,关键的挑战是,在我们的情况下,不同视图的实例之间没有一对一的对应关系,这需要明确建模跨分辨率的实例的对应关系。我们建议使用不同决议的实例特征,以使用注意机制来学习跨决议的实例之间的对应关系。关于使用卫星观测值和文本数据上的情感分类对现实世界应用绘制城市区域进行映射的示例,显示了所提出的方法的有效性。
Many real-world phenomena are observed at multiple resolutions. Predictive models designed to predict these phenomena typically consider different resolutions separately. This approach might be limiting in applications where predictions are desired at fine resolutions but available training data is scarce. In this paper, we propose classification algorithms that leverage supervision from coarser resolutions to help train models on finer resolutions. The different resolutions are modeled as different views of the data in a multi-view framework that exploits the complementarity of features across different views to improve models on both views. Unlike traditional multi-view learning problems, the key challenge in our case is that there is no one-to-one correspondence between instances across different views in our case, which requires explicit modeling of the correspondence of instances across resolutions. We propose to use the features of instances at different resolutions to learn the correspondence between instances across resolutions using an attention mechanism.Experiments on the real-world application of mapping urban areas using satellite observations and sentiment classification on text data show the effectiveness of the proposed methods.