论文标题
n,c和b间隙对cu $ _3 $ au structure的合金结构和磁性的影响
Effect of N, C and B interstitials on the structural and magnetic properties of alloys with Cu$_3$Au-structure
论文作者
论文摘要
高通量密度函数计算用于研究间质B,C和N原子对21种合金中的效果,以在立方Cu $ _3 $ au结构中结晶。结果表明,间质物可以对磁结晶各向异性能量(MAE),热力学稳定性和磁接地态结构产生重大影响,从而使这些合金有趣,对于硬磁性,磁磁和其他应用。对于29个合金/间质组合,预计稳定的合金的稳定合金预计会超过5 \%。在ni $ _3 $ _3 $ MN的间隙n诱导具有实质性单轴MAE的四方失真,以实现逼真的N浓度。 Mn $ _3x $ n $ _x $($ x $ = RH,IR,PT和SB)被鉴定为具有强磁含量和晶状体各向异性的合金。对于Mn $ _3 $ ir,我们在最稳定的串联铁磁状态以及在非恒星磁接地状态下发现N合金的MAE强劲增强。 Mn $ _3 $ ir和mn $ _3 $ irn Show也有趣的拓扑运输属性。讨论了n浓度和应变对磁性特性的影响。此外,n对MN $ _3 $ ir的MAE产生的巨大影响以及间隙N对无定形MN $ _3 $ ir的可能影响,这是当今数据存储设备必不可少的材料,在电子结构中讨论了。对于Mn $ _3 $ SB,非电视,铁磁和铁磁状态的能量非常接近,这使得这种材料对于磁平衡的应用而言可能很有趣。对于已研究的MN合金和竞争阶段,磁接地状态的确定对于可靠的相位稳定性预测至关重要。
High-throughput density functional calculations are used to investigate the effect of interstitial B, C and N atoms on 21 alloys reported to crystallize in the cubic Cu$_3$Au structure. It is shown that the interstitials can have a significant impact on the magneto-crystalline anisotropy energy (MAE), the thermodynamic stability and the magnetic ground state structure, making these alloys interesting for hard magnetic, magnetocaloric and other applications. For 29 alloy/interstitial combinations the formation of stable alloys with interstitial concentrations above 5\% is expected. In Ni$_3$Mn interstitial N induces a tetragonal distortion with substantial uniaxial MAE for realistic N concentrations. Mn$_3X$N$_x$ ($X$=Rh, Ir, Pt and Sb) are identified as alloys with strong magneto-crystalline anisotropy. For Mn$_3$Ir we find a strong enhancement of the MAE upon N alloying in the most stable collinear ferrimagnetic state as well as in the non-collinear magnetic ground state. Mn$_3$Ir and Mn$_3$IrN show also interesting topological transport properties. The effect of N concentration and strain on the magnetic properties are discussed. Further, the huge impact of N on the MAE of Mn$_3$Ir and a possible impact of interstitial N on amorphous Mn$_3$Ir, a material that is indispensable in today's data storage devices, are discussed at hand of the electronic structure. For Mn$_3$Sb, non-collinear, ferrimagnetic and ferromagnetic states are very close in energy, making this material potentially interesting for magnetocaloric applications. For the investigated Mn alloys and competing phases, the determination of the magnetic ground state is essential for a reliable prediction of the phase stability.