论文标题
关于非扰动病房约束的旋律重新归一化组流量的教学评论
Pedagogical comments about nonperturbative Ward-constrained melonic renormalization group flow
论文作者
论文摘要
本文除了我们最近的作品外,还打算探索湿特里奇流动方程在理论空间的一部分中的行为,这些空间由受病房身份约束的非分支瓜跨越。我们专注于排名5的可符合性的张力组群体理论,并考虑对局部电位近似的非平凡扩展,即有效的有效顶点扩展是为了恰好可赋予的四分之一的四分之一的旋律相互作用,这忽略了来自不连续相互作用的效果。在研究动态约束的流动时,我们明确地表明结果薄弱地依赖于经典作用中涉及的四分之一相互作用的数量。特别是,完全连接的模型的预测与单色模型基本相同。最后,使用病房身份关闭流动方程,而没有其他假设来计算有效顶点扩展涉及的积分,我们在与高斯区域相关的无约束理论空间中找不到可靠的固定点。
This paper, in addition to our recent works, intends to explore the behavior of the Wetterich flow equations in the portion of the theory space spanned by non-branching melons constrained with Ward-identities. We focus on a rank-5 just-renormalizable tensorial group field theory and consider a non-trivial extension of the local potential approximation namely effective vertex expansion for just-renormalizable quartic melonic interactions, disregarding effects coming from disconnected interactions. Investigating the dynamically constrained flow, we show explicitly that results weakly rely on the number of quartic interactions involved in the classical action. In particular, the predictions for the fully connected model are essentially the same as for the single colored model. Finally, closing the flow equations using Ward identities without additional assumptions to compute integrals involved in the effective vertex expansion, we do not find reliable fixed point in the unconstrained theory space connected with the Gaussian region.