论文标题
使用固有的量子抗性量子计算机上的旋转化学系统中的热松弛模拟
Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum Computer Using Inherent Qubit Decoherence
论文作者
论文摘要
当前和近任期量子计算机(即NISQ设备)的计算能力有限,部分原因是量子的解压力。在这里,我们试图利用量子折叠作为模拟现实世界量子系统的行为的资源,这些量子系统始终可能会发生变质,而没有其他计算开销。作为朝着此目标的第一步,我们在量子计算机上模拟了自由基离子对(RPS)的量子节拍的热弛豫,作为该方法的概念证明。我们提出了三种实现热放松的方法,一种明确应用了kraus oberators的方法,一种结合了一种由经典后处理步骤中的两个单独的电路产生的,一种是依赖于Qubits本身的固有的变形的一种。我们使用我们的方法模拟了两个现实世界系统,并在结果,实验数据和理论预测之间找到了极好的一致性。
Current and near term quantum computers (i.e. NISQ devices) are limited in their computational power in part due to qubit decoherence. Here we seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems, which are always subject to decoherence, with no additional computational overhead. As a first step toward this goal we simulate the thermal relaxation of quantum beats in radical ion pairs (RPs) on a quantum computer as a proof of concept of the method. We present three methods for implementing the thermal relaxation, one which explicitly applies the relaxation Kraus operators, one which combines results from two separate circuits in a classical post-processing step, and one which relies on leveraging the inherent decoherence of the qubits themselves. We use our methods to simulate two real world systems and find excellent agreement between our results, experimental data, and the theoretical prediction.