论文标题
Cremona组在CAT(0)立方体复合体上的动作
Actions of Cremona groups on CAT(0) cube complexes
论文作者
论文摘要
对于每个d,我们构建了CAT(0)Cube Complexs,在该复合物上将Cremona组排名为Isomerties。从这些行动中,我们推断出有关Cremona群体的新群体理论和动态结果。特别是,我们研究了特殊基因座的不可还原成分的动态行为,我们证明了正则化定理,我们发现了对不可判断的异性转化的程度增长的新约束,我们表明某些Birational Tranciate转换的中心化是很小的。
For each d we construct CAT(0) cube complexes on which Cremona groups rank d act by isometries. From these actions we deduce new and old group theoretical and dynamical results about Cremona groups. In particular, we study the dynamical behaviour of the irreducible components of exceptional loci, we prove regularization theorems, we find new constraints on the degree growth for non-regularizable birational transformations, and we show that the centralizer of certain birational transformations is small.