论文标题
在满足CMSO特性的超级图
On Supergraphs Satisfying CMSO Properties
论文作者
论文摘要
让CMSO表示图形的计数二阶逻辑。我们给出一个建设性的证据,表明,对于某些可计算功能$ f $,有一个算法$ \ mathfrak {a} $,将作为输入CMSO句子$φ$,一个正整数$ t $,以及最大$δ$的最高$ g $的最高$ g $,并确定时间$ f(cd cd cd)cd cd cd cd cd cd cd(cd) | g |^{o(t)} $,$ g $是否具有最多$ t $的supergraph $ g'$,以便$ g'\型号φ$。上面描述的算法元素在图形完成算法的框架内为某些未解决的问题提供了新的启示。特别是,使用此Metatheorem,我们提供了一种明确的算法,该算法在时间$ f(d)\ cdot 2^{o(δ\ cdot d)} \ cdot | g | g |^{o(d)} $,是否具有最大程度$δ$的最大值$δ的连接图中,大多数是$ d $ d $ d $ d $。此外,我们表明,对于每个固定的$ K $,确定$ g $的问题最多最多具有$ k $ - outerplanar直径的超图。该结果可以在两个方向上概括。首先,直径参数可以被任何有效的CMSO可定义参数$ \ mathbf {p} $取代。此类参数的示例是顶点覆盖数,主导数字和许多其他收缩二维参数。在第二个方向上,平面性要求可以放松到有界的属,更普遍地到有界的局部树宽。
Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function $f$, there is an algorithm $\mathfrak{A}$ that takes as input a CMSO sentence $φ$, a positive integer $t$, and a connected graph $G$ of maximum degree at most $Δ$, and determines, in time $f(|φ|,t)\cdot 2^{O(Δ\cdot t)}\cdot |G|^{O(t)}$, whether $G$ has a supergraph $G'$ of treewidth at most $t$ such that $G'\models φ$. The algorithmic metatheorem described above sheds new light on certain unresolved questions within the framework of graph completion algorithms. In particular, using this metatheorem, we provide an explicit algorithm that determines, in time $f(d)\cdot 2^{O(Δ\cdot d)}\cdot |G|^{O(d)}$, whether a connected graph of maximum degree $Δ$ has a planar supergraph of diameter at most $d$. Additionally, we show that for each fixed $k$, the problem of determining whether $G$ has an $k$-outerplanar supergraph of diameter at most $d$ is strongly uniformly fixed parameter tractable with respect to the parameter $d$. This result can be generalized in two directions. First, the diameter parameter can be replaced by any contraction-closed effectively CMSO-definable parameter $\mathbf{p}$. Examples of such parameters are vertex-cover number, dominating number, and many other contraction-bidimensional parameters. In the second direction, the planarity requirement can be relaxed to bounded genus, and more generally, to bounded local treewidth.