论文标题

非线性静态参数估计的两阶段批处理算法

A Two-Stage Batch Algorithm for Nonlinear Static Parameter Estimation

论文作者

Sun, Kerry, Gebre-Egziabher, Demoz

论文摘要

提出了用于解决航空工程应用中出现的一类非线性的静态参数估计问题的两阶段批处理估计算法。它显示了如何将这些问题重铸成适合提议的两阶段估计过程的形式。在第一阶段,线性最小二乘用于获得未知参数的子集(集1),而残留采样过程用于选择其余参数(集合2)的初始值。在第二阶段,根据局部最小值的唯一性,仅需要重新估算第二组中的参数,或者必须通过非线性约束优化来同时重新估计所有参数。第一阶段的估计值用作第二阶段优化器的初始条件。结果表明,这种方法减轻了对初始条件的敏感性,并最大程度地减少了将非线性成本函数融合到不正确的局部最小值的可能性。提出了错误约束分析,以表明可以以总成本函数将总成本函数驱动到最佳成本,并且差异具有上限。两个教程示例用于展示如何实现此估计器并将其性能与其他类似的非线性估计器进行比较。最后,使用从小型无人机(UAV)收集的飞行测试数据,将估计器用于5孔皮托管校准问题,该数据无法通过单阶段方法轻松解决。

A two-stage batch estimation algorithm for solving a class of nonlinear, static parameter estimation problems that appear in aerospace engineering applications is proposed. It is shown how these problems can be recast into a form suitable for the proposed two-stage estimation process. In the first stage, linear least squares is used to obtain a subset of the unknown parameters (set 1), while a residual sampling procedure is used for selecting initial values for the rest of the parameters (set 2). In the second stage, depending on the uniqueness of the local minimum, either only the parameters in the second set need to be re-estimated, or all the parameters will have to be re-estimated simultaneously, by a nonlinear constrained optimization. The estimates from the first stage are used as initial conditions for the second stage optimizer. It is shown that this approach alleviates the sensitivity to initial conditions and minimizes the likelihood of converging to an incorrect local minimum of the nonlinear cost function. An error bound analysis is presented to show that the first stage can be solved in such a way that the total cost function will be driven to the optimal cost, and the difference has an upper bound. Two tutorial examples are used to show how to implement this estimator and compare its performance to other similar nonlinear estimators. Finally, the estimator is used on a 5-hole Pitot tube calibration problem using flight test data collected from a small Unmanned Aerial Vehicle (UAV) which cannot be easily solved with single-stage methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源