论文标题

行为:一个行为决策树学习以构建以用户为中心的上下文感知预测模型

BehavDT: A Behavioral Decision Tree Learning to Build User-Centric Context-Aware Predictive Model

论文作者

Sarker, Iqbal H., Colman, Alan, Han, Jun, Khan, Asif Irshad, Abushark, Yoosef B., Salah, Khaled

论文摘要

本文制定了基于用户多样化的智能手机行为活动来构建上下文感知预测模型的问题。在机器学习和数据科学领域,类似树的模型作为决策树的模型被认为是最受欢迎的分类技术之一,可用于构建数据驱动的预测模型。传统的决策树模型通常会创建许多叶子节点作为代表特定于上下文刚性决策的决策节点,因此可能会导致行为建模中的过度拟合问题。但是,在上下文感知环境中的许多实际情况下,广义的结果可能在有效捕获用户行为的情况下发挥重要作用。在本文中,我们提出了一个行为决策树,“ civutDT”上下文感知模型,该模型考虑了根据个人优先级别以用户行为为导向的概括。行为模型不仅输出了广义决策,而且输出相关特殊情况下的上下文特定决策。通过对单个用户真实智能手机数据集进行实验来研究我们的行为模型的有效性。我们的实验结果表明,与传统的机器学习方法相比,提出的行为上下文感知模型更有效,可以预测考虑多维环境的用户多样化行为。

This paper formulates the problem of building a context-aware predictive model based on user diverse behavioral activities with smartphones. In the area of machine learning and data science, a tree-like model as that of decision tree is considered as one of the most popular classification techniques, which can be used to build a data-driven predictive model. The traditional decision tree model typically creates a number of leaf nodes as decision nodes that represent context-specific rigid decisions, and consequently may cause overfitting problem in behavior modeling. However, in many practical scenarios within the context-aware environment, the generalized outcomes could play an important role to effectively capture user behavior. In this paper, we propose a behavioral decision tree, "BehavDT" context-aware model that takes into account user behavior-oriented generalization according to individual preference level. The BehavDT model outputs not only the generalized decisions but also the context-specific decisions in relevant exceptional cases. The effectiveness of our BehavDT model is studied by conducting experiments on individual user real smartphone datasets. Our experimental results show that the proposed BehavDT context-aware model is more effective when compared with the traditional machine learning approaches, in predicting user diverse behaviors considering multi-dimensional contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源