论文标题
零射线加强学习与深度注意卷积神经网络
Zero-Shot Reinforcement Learning with Deep Attention Convolutional Neural Networks
论文作者
论文摘要
神经网络模型的模拟对仿真和模拟世界传输是一个困难的问题。为了缩小现实差距,以仿真到现实的世界转移的先验方法着重于域适应性,解耦感知和动态并分别解决每个问题,以及对代理参数和环境条件的随机化,以使学习剂暴露于各种条件。尽管这些方法提供了可接受的性能,但在给定任务(例如自动驾驶或机器人操纵)上捕获大量参数所需的计算复杂性。我们的关键贡献是从理论上证明并在经验上证明,具有特定视觉传感器配置的深度注意力卷积神经网络(DACNN)在具有较高域和参数变化的数据集中进行了特定的视觉传感器配置以及较低计算复杂性的训练。具体而言,通过策略优化来学习注意力网络权重,以专注于导致最佳动作的本地依赖性,并且不需要在现实世界中进行概括。我们的新体系结构适应了控制目标的感知,从而导致零击学习而没有预先培训感知网络。为了衡量我们新的深网架构对域适应的影响,我们将自动驾驶视为用例。我们在模拟到仿真和模拟到现实的场景中执行了一组大量的实验,以比较我们对包括当前最新模型在内的几个基准的方法。
Simulation-to-simulation and simulation-to-real world transfer of neural network models have been a difficult problem. To close the reality gap, prior methods to simulation-to-real world transfer focused on domain adaptation, decoupling perception and dynamics and solving each problem separately, and randomization of agent parameters and environment conditions to expose the learning agent to a variety of conditions. While these methods provide acceptable performance, the computational complexity required to capture a large variation of parameters for comprehensive scenarios on a given task such as autonomous driving or robotic manipulation is high. Our key contribution is to theoretically prove and empirically demonstrate that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity. Specifically, the attention network weights are learned through policy optimization to focus on local dependencies that lead to optimal actions, and does not require tuning in real-world for generalization. Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network. To measure the impact of our new deep network architecture on domain adaptation, we consider autonomous driving as a use case. We perform an extensive set of experiments in simulation-to-simulation and simulation-to-real scenarios to compare our approach to several baselines including the current state-of-art models.