论文标题

宇宙学角三角形和非高斯协方差

Cosmological Angular Trispectra and Non-Gaussian Covariance

论文作者

Lee, Hayden, Dvorkin, Cora

论文摘要

由于投影积分的高度振荡性,角度宇宙相关因子非常难以计算。在宇宙学扰动理论的分析方法的最新发展中,我们提出了一种有效的方法来计算角空间中的宇宙学四点相关性,从而将先前的作品推广到较低点功能上。这建立在FFTLOG算法上,该算法将物质功率谱视为幂律函数的总和,从而使某些动量积分在分析上可以解决。对于“可分离”形式的相关器,计算复杂性大大降低了 - 我们为宇宙三角形的可分离性概念定义了,并为不同可分离性类别的角相关剂提供了公式。作为我们形式主义的应用,我们在树层上计算有和没有原始非高斯的角度星系三角谱。这包括红移空间扭曲和偏置参数的效果,直至立方顺序。我们还计算了由于连接的四点函数,超出了肢体近似,因此计算了角质功率谱的非高斯协方差。我们证明,与标准知识相比,即使对于大型多物,非高斯协方差计算也可能失败。

Angular cosmological correlators are infamously difficult to compute due to the highly oscillatory nature of the projection integrals. Motivated by recent development on analytic approaches to cosmological perturbation theory, in this paper we present an efficient method for computing cosmological four-point correlations in angular space, generalizing previous works on lower-point functions. This builds on the FFTLog algorithm that approximates the matter power spectrum as a sum over power-law functions, which makes certain momentum integrals analytically solvable. The computational complexity is drastically reduced for correlators in a "separable" form---we define a suitable notion of separability for cosmological trispectra, and derive formulas for angular correlators of different separability classes. As an application of our formalism, we compute the angular galaxy trispectrum at tree level, with and without primordial non-Gaussianity. This includes effects of redshift space distortion and bias parameters up to cubic order. We also compute the non-Gaussian covariance of the angular matter power spectrum due to the connected four-point function, beyond the Limber approximation. We demonstrate that, in contrast to the standard lore, the Limber approximation can fail for the non-Gaussian covariance computation even for large multipoles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源