论文标题

现实世界大的跨透明损失函数:对标签错误的成本进行建模

The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling

论文作者

Ho, Yaoshiang, Wookey, Samuel

论文摘要

在本文中,我们提出了一个新的指标,以衡量分类器的合适性,即现实世界成本功能。有关现实世界问题的信息(例如财务影响),其他措施(例如准确性或F1)却没有的指标因素。该指标也更直接地解释为用户。为了优化该指标,我们在二进制和单标签分类变体中介绍了现实的重量crossentropy损失函数。这两种变体都可以直接输入现实世界成本作为权重。对于单标签,多材分类,我们的损失函数还允许在训练机器学习模型期间直接惩罚由标签加权的概率误报。我们将损失功能的设计与二进制杂交和分类杂交功能以及其加权变体进行了比较,以讨论改善处理机器学习的各种已知缺陷的潜力,范围从不平衡的类别到医疗诊断误差到强化社交偏见。我们创建了使用MNIST数据集模拟这些问题的方案,并展示了我们新损失函数的经验结果。最后,我们根据最大似然估计来绘制此功能的证明,并讨论未来的方向。

In this paper, we propose a new metric to measure goodness-of-fit for classifiers, the Real World Cost function. This metric factors in information about a real world problem, such as financial impact, that other measures like accuracy or F1 do not. This metric is also more directly interpretable for users. To optimize for this metric, we introduce the Real-World- Weight Crossentropy loss function, in both binary and single-label classification variants. Both variants allow direct input of real world costs as weights. For single-label, multicategory classification, our loss function also allows direct penalization of probabilistic false positives, weighted by label, during the training of a machine learning model. We compare the design of our loss function to the binary crossentropy and categorical crossentropy functions, as well as their weighted variants, to discuss the potential for improvement in handling a variety of known shortcomings of machine learning, ranging from imbalanced classes to medical diagnostic error to reinforcement of social bias. We create scenarios that emulate those issues using the MNIST data set and demonstrate empirical results of our new loss function. Finally, we sketch a proof of this function based on Maximum Likelihood Estimation and discuss future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源