论文标题
关键空间中的非线性抛物线随机演变方程。
Nonlinear parabolic stochastic evolution equations in critical spaces Part I. Stochastic maximal regularity and local existence
论文作者
论文摘要
在本文中,我们为具有高斯噪声的非线性随机部分微分方程开发了一种新方法。我们的目的是提供一个适用于大型SPDE的抽象框架,其中包括许多非线性抛物线问题的重要案例,这些问题是准或半线性类型的。第一部分是关于局部存在和适应性良好的。准备工作的第二部分是爆炸标准和正则化。我们的理论是以$ l^p $ setting提出的,因此,我们可以以非常有效的方式处理非线性。给出了几种具体问题及其准线性变体的应用。这包括汉堡方程,Allen-Cahn方程,Cahn-Hilliard方程,反应扩散方程和多孔介质方程。非线性的相互作用和初始数据的关键空间可为这些SPDE提供新的结果和见解。这些证明是基于最大规律性理论的最新发展,用于确定性和随机演化方程的线性化问题。特别是,我们的理论可以看作是Prüss-Simonett-Wilke(2018)引起的临界空间理论的随机版本。急剧的加权时间定型使我们能够处理粗糙的初始值并获得瞬时正则化结果。抽象良好的结果是通过几种复杂的分裂和截断参数的组合获得的。
In this paper we develop a new approach to nonlinear stochastic partial differential equations with Gaussian noise. Our aim is to provide an abstract framework which is applicable to a large class of SPDEs and includes many important cases of nonlinear parabolic problems which are of quasi- or semilinear type. This first part is on local existence and well-posedness. A second part in preparation is on blow-up criteria and regularization. Our theory is formulated in an $L^p$-setting, and because of this we can deal with nonlinearities in a very efficient way. Applications to several concrete problems and their quasilinear variants are given. This includes Burger's equation, the Allen-Cahn equation, the Cahn-Hilliard equation, reaction-diffusion equations, and the porous media equation. The interplay of the nonlinearities and the critical spaces of initial data leads to new results and insights for these SPDEs. The proofs are based on recent developments in maximal regularity theory for the linearized problem for deterministic and stochastic evolution equations. In particular, our theory can be seen as a stochastic version of the theory of critical spaces due to Prüss-Simonett-Wilke (2018). Sharp weighted time-regularity allow us to deal with rough initial values and obtain instantaneous regularization results. The abstract well-posedness results are obtained by a combination of several sophisticated splitting and truncation arguments.