论文标题

深神经网络应用:HIGGS Boson CP状态混合角在H到Tau Tau衰减和LHC处

Deep Neural Network application: Higgs boson CP state mixing angle in H to tau tau decay and at LHC

论文作者

Lasocha, K., Richter-Was, E., Sadowski, M., Was, Z.

论文摘要

H到tau tau引发的级联衰变的连续步骤可用于测量希格斯耦合,尤其是希格斯玻色子奇偶校验。在先前的论文中,我们发现tau^pm到pi^pm pi^0 nu和tau^pm至3pi^pm nu衰减的多维特征可用于区分标量和伪苏加级希格斯状态。二进制分类的机器学习技术(ML)提供了管理这种复杂多维签名的突破性机会。 两个可能的CP状态之间的分类:标量和伪尺度,现在扩展到对希格斯玻色子平价的假设混合角度的测量。理论预测H对混合角的tau tau矩阵元件对混合角的功能依赖性。使用深神经网络研究了HIGGS玻色子事件样本(包括$τ$ dep)的首选混合角度的潜力。该问题是作为分类或回归而被尊重的,目的是确定事件的目的:a)混合角的概率分布(自旋重); b)自旋重量功能形式的参数; c)最喜欢的混合角。 评估和比较方法的性能。收集数值结果。

The consecutive steps of cascade decay initiated by H to tau tau can be useful for the measurement of Higgs couplings and in particular of the Higgs boson parity. In the previous papers we have found, that multi-dimensional signatures of the tau^pm to pi^pm pi^0 nu and tau^pm to 3pi^pm nu decays can be used to distinguish between scalar and pseudoscalar Higgs state. The Machine Learning techniques (ML) of binary classification, offered break-through opportunities to manage such complex multidimensional signatures. The classification between two possible CP states: scalar and pseudoscalar, is now extended to the measurement of the hypothetical mixing angle of Higgs boson parity states. The functional dependence of H to tau tau matrix element on the mixing angle is predicted by theory. The potential to determine preferred mixing angle of the Higgs boson events sample including $τ$-decays is studied using Deep Neural Network. The problem is adressed as classification or regression with the aim to determine the per-event: a) probability distribution (spin weight) of the mixing angle; b) parameters of the functional form of the spin weight; c) the most preferred mixing angle. Performance of methods are evaluated and compared. Numerical results are collected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源