论文标题
通过投影几何形状的次指数和线性子包装编码的缓存
Subexponential and Linear Subpacketization Coded Caching via Projective Geometry
论文作者
论文摘要
使用编码的缓存获得了缓存广播通信速率的巨大收益,但是要获得这种最现有的集中式编码的缓存方案,要求服务器上的文件可以分为大量零件(此数字称为子键盘化)。实际上,大多数计划要求子包装在$ \ sqrt [\ leftroot {-1} \ Uproot {1} r] {k} $中,对于某些积极的Integer $ r $和$ k $的用户数量,因此在$ \ sqrt [\ leftroot {-1} \ uproot {1} r Root {1} r] {k} $中,子包装化是渐近的。在另一个极端上,很少有在$ k $中具有子包装线性的方案是已知的。但是,他们要求大量用户存在,或者仅提供的速率很少。在这项工作中,我们提出了两种新的集中式编码的缓存方案,该计划使用有限场上的投影几何形状,具有低亚包装和中等利率的增长。两种方案都达到了相同的渐近子包装,在$ o((\ log k)^2)$中是指数的(从而在$ \ sqrt [\ leftroot {-1} \ uproot {1} rroot {1} rroot {1} r] rroot {1} r] {k} $ exponent上改善。第一个方案的缓存要求较大,但最多具有恒定速率(增加$ k $),而第二个则具有较小的缓存要求,但速率较高。作为第二个方案的特殊情况,我们获得了一种新的线性子包装方案,该方案的参数范围比现有的线性子包装方案更灵活。扩展我们的技术,我们还获得了其他多收率设置(例如分布式计算和高速缓存干扰通道)的低子包装方案。我们通过广泛的数值比较来验证所有方案的性能。对于具有给定子包装级别的特殊类别的对称缓存方案,我们提出了两个新信息理论下限,涉及编码缓存的最佳速率。
Large gains in the rate of cache-aided broadcast communication are obtained using coded caching, but to obtain this most existing centralized coded caching schemes require that the files at the server be divisible into a large number of parts (this number is called subpacketization). In fact, most schemes require the subpacketization to be growing asymptotically as exponential in $\sqrt[\leftroot{-1}\uproot{1}r]{K}$ for some positive integer $r$ and $K$ being the number of users. On the other extreme, few schemes having subpacketization linear in $K$ are known; however, they require large number of users to exist, or they offer only little gain in the rate. In this work, we propose two new centralized coded caching schemes with low subpacketization and moderate rate gains utilizing projective geometries over finite fields. Both the schemes achieve the same asymptotic subpacketization, which is exponential in $O((\log K)^2)$ (thus improving on the $\sqrt[\leftroot{-1}\uproot{1}r]{K}$ exponent). The first scheme has a larger cache requirement but has at most a constant rate (with increasing $K$), while the second has small cache requirement but has a larger rate. As a special case of our second scheme, we get a new linear subpacketization scheme, which has a more flexible range of parameters than the existing linear subpacketization schemes. Extending our techniques, we also obtain low subpacketization schemes for other multi-receiver settings such as distributed computing and the cache-aided interference channel. We validate the performance of all our schemes via extensive numerical comparisons. For a special class of symmetric caching schemes with a given subpacketization level, we propose two new information theoretic lower bounds on the optimal rate of coded caching.