论文标题

多画卷积协作过滤

Multi-Graph Convolution Collaborative Filtering

论文作者

Sun, Jianing, Zhang, Yingxue, Ma, Chen, Coates, Mark, Guo, Huifeng, Tang, Ruiming, He, Xiuqiang

论文摘要

个性化的建议无处不在,在许多在线服务中发挥了重要作用。大量研究致力于学习用户和项目的向量表示,目的是根据表示形式的相似性来预测用户对项目的偏好。技术范围从经典矩阵分解到最新的基于深度学习的方法。但是,我们认为现有方法不会充分利用从用户项目交互数据以及用户对和项目对之间的相似性中获得的信息。在这项工作中,我们开发了一个基于图卷积的推荐框架,称为Multi-Graph Reclolution Collaborative过滤(Multi-GCCF),该框架在嵌入学习过程中明确地将多个图纳入了。多GCCF不仅通过党用户 - 项目交互图来表达高阶信息,而且还通过构建和处理用户用户和项目 - 项目图表来集成近端信息。此外,在两部分图上执行图形卷积时,我们考虑用户节点和项目节点之间的固有差异。我们对四个可公开访问的基准进行了广泛的实验,相对于几种最新的协作过滤和基于图形神经网络的建议模型,显示出显着改进。进一步的实验定量验证了我们提出的模型的每个组成部分的有效性,并证明了学习的嵌入捕获了重要的关系结构。

Personalized recommendation is ubiquitous, playing an important role in many online services. Substantial research has been dedicated to learning vector representations of users and items with the goal of predicting a user's preference for an item based on the similarity of the representations. Techniques range from classic matrix factorization to more recent deep learning based methods. However, we argue that existing methods do not make full use of the information that is available from user-item interaction data and the similarities between user pairs and item pairs. In this work, we develop a graph convolution-based recommendation framework, named Multi-Graph Convolution Collaborative Filtering (Multi-GCCF), which explicitly incorporates multiple graphs in the embedding learning process. Multi-GCCF not only expressively models the high-order information via a partite user-item interaction graph, but also integrates the proximal information by building and processing user-user and item-item graphs. Furthermore, we consider the intrinsic difference between user nodes and item nodes when performing graph convolution on the bipartite graph. We conduct extensive experiments on four publicly accessible benchmarks, showing significant improvements relative to several state-of-the-art collaborative filtering and graph neural network-based recommendation models. Further experiments quantitatively verify the effectiveness of each component of our proposed model and demonstrate that the learned embeddings capture the important relationship structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源