论文标题

快速使用明确的内部产品空间来快速估算理论学习描述符

Fast Estimation of Information Theoretic Learning Descriptors using Explicit Inner Product Spaces

论文作者

Li, Kan, Principe, Jose C.

论文摘要

内核方法形成了一种理论上,功能强大且通用的框架,以解决信号处理和机器学习中的非线性问题。标准方法依赖于\ emph {kernel trick}来对内核函数进行成对评估,从而导致大型数据集的可扩展性问题,因为其线性和超级线性增长相对于培训数据。最近,我们提出了\ emph {no-trick}(nt)内核自适应滤波(KAF),该核电滤波(KAF)使用与恒定复杂性的数据无关基础利用明确的特征空间映射。由特征映射定义的内部产物对应于诱导有限维生复制的内核希尔伯特空间(RKHS)的正定有限级内核。信息理论学习(ITL)是一个框架,基于Renyi熵的非参数估计器,信息理论描述符替换了自适应系统设计的常规二阶统计。在概率密度函数空间上定义的ITL的RKHS简化了监督或无监督学习的统计推断。 ITL标准考虑了系统和信号的高阶统计行为。但是,这是计算复杂性增加的代价。在本文中,我们将NT内核概念扩展到ITL,以改善从信号中提取信息,而不会损害可扩展性。具体而言,我们专注于使用明确的内部产品空间(EIPS)内核的快速,可扩展和准确估计器的家族。我们通过实验证明了EIPS-ITL估计器的卓越性能和NT-KAF的卓越性能。

Kernel methods form a theoretically-grounded, powerful and versatile framework to solve nonlinear problems in signal processing and machine learning. The standard approach relies on the \emph{kernel trick} to perform pairwise evaluations of a kernel function, leading to scalability issues for large datasets due to its linear and superlinear growth with respect to the training data. Recently, we proposed \emph{no-trick} (NT) kernel adaptive filtering (KAF) that leverages explicit feature space mappings using data-independent basis with constant complexity. The inner product defined by the feature mapping corresponds to a positive-definite finite-rank kernel that induces a finite-dimensional reproducing kernel Hilbert space (RKHS). Information theoretic learning (ITL) is a framework where information theory descriptors based on non-parametric estimator of Renyi entropy replace conventional second-order statistics for the design of adaptive systems. An RKHS for ITL defined on a space of probability density functions simplifies statistical inference for supervised or unsupervised learning. ITL criteria take into account the higher-order statistical behavior of the systems and signals as desired. However, this comes at a cost of increased computational complexity. In this paper, we extend the NT kernel concept to ITL for improved information extraction from the signal without compromising scalability. Specifically, we focus on a family of fast, scalable, and accurate estimators for ITL using explicit inner product space (EIPS) kernels. We demonstrate the superior performance of EIPS-ITL estimators and combined NT-KAF using EIPS-ITL cost functions through experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源