论文标题
通过代数K理论的cut和粘贴歧管的不变性
Cut and paste invariants of manifolds via algebraic K-theory
论文作者
论文摘要
Jonathan Campbell和Inna Zakharevich的最新工作致力于通过代数$ k $ - 理论来研究剪刀一致性问题,并应用这些工具来研究变种的Grothendieck环。在本文中,我们给出了他们的框架的新应用:我们构建了一个$ k $ - 空间,恢复了经典的$ \ mathrm {sk} $(“ schneiden und und kleben”,“德语”,用于$π_0$上的歧管,我们构建了Euler特征的派生版本。
Recent work of Jonathan Campbell and Inna Zakharevich has focused on building machinery for studying scissors congruence problems via algebraic $K$-theory, and applying these tools to studying the Grothendieck ring of varieties. In this paper we give a new application of their framework: we construct a $K$-space that recovers the classical $\mathrm{SK}$ ("schneiden und kleben," German for "cut and paste") groups for manifolds on $π_0$, and we construct a derived version of the Euler characteristic.