论文标题
空间山的月球问题中的双对称周期性轨道,dontarate secentarate Primary
Doubly-symmetric periodic orbits in the spatial Hill's lunar problem with oblate secondary primary
论文作者
论文摘要
在本文中,我们考虑了在空间圆形山的月球问题中存在一个双对称周期性轨道的家族,其中次要原始原始原产为。存在通过将固定点定理应用于在消除近似系统的一阶扰动中的短期周期效应后,将固定点定理应用于在繁殖性元素元素中表达的周期性条件的方程。
In this article we consider the existence of a family of doubly-symmetric periodic orbits in the spatial circular Hill's lunar problem, in which the secondary primary at the origin is oblate. The existence is shown by applying a fixed point theorem to the equations with periodical conditions expressed in Poincare-Delaunay elements for the double symmetries after eliminating the short periodic effects in the first-order perturbations of the approximated system.