论文标题
重力插入的共形和等距嵌入
Conformal and isometric embeddings of gravitational instantons
论文作者
论文摘要
我们在$ \ mathbb {r}^8 $和$ \ mathbb {r}^7 $中构建了某些引力插入的等距和同型等距嵌入。特别是我们表明,爱因斯坦的嵌入类 - 由于烧伤而导致的墨西哥intsanton等于$ 3 $。对于$ \ mathbb {cp}^2 $,eguchi-hanson和反二重要的taub-nut,我们在嵌入式类中获得上和下限。
We construct isometric and conformally isometric embeddings of some gravitational instantons in $\mathbb{R}^8$ and $\mathbb{R}^7$. In particular we show that the embedding class of the Einstein--Maxwell instanton due to Burns is equal to $3$. For $\mathbb{CP}^2$, Eguchi--Hanson and anti-self-dual Taub-NUT we obtain upper and lower bounds on the embedding class.